Electronic supplementary information

PREPARATION OF POLYDIMETHYLSILOXANE COPOLYMERS BY THE AZIDE-ALKYNE HUISGEN CYCLOADDITION METHOD

K. K. Bakanov,*** K. S. Klokova,* K. A. Bezlepkina,*** S. A. Milenin,***. E. Yu. Kramarenko,*** and A. M. Muzafarov**

^a Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, ul. Profsoyuznaya 70, Moscow, 117393 Russia
 ^b Research Laboratory of New Silicone Materials and Technologies, Tula State Lev Tolstoy Pedagogical University, pr. Lenina 125, Tula, Tula Oblast, 300026 Russia
 ^c Center of National Technological Initiative, Bauman Moscow State Technical University, 2-ya Baumanskaya ul. 5, Moscow, 105005 Russia
 ^d Faculty of Physics, Lomonosov Moscow State University, Leninskye Gory 1, Moscow, 119991 Russia

1. Syntheses

Synthesis of di(prop-2-yn-1-yl) adipate. Propargyl alcohol (8.77 g, 156.5 mmol) was added to a solution of adipic acid (8.80 g, 60.2 mmol) and *p*-toluenesulfonic acid monohydrate (0.572 g, 3 mmol) in benzene (20 mL). The stirred reaction mixture was heated at 110 °C for 5 h. The resulting mixture was diluted with CH₂Cl₂ and washed with aq. Na₂CO₃. The organic layer was separated, dried over anhydrous MgSO₄, and evaporated to dryness (the solvent was removed at 1 Torr) to give the target product as a yellow powder. Yield: 8.54 g (85.4%).

¹H NMR (300 MHz, CDCl₃): δ 4.64–4.63 (s, 4H, ≡C-<u>CH</u>₂-O-), 2.46–2.44 (s, 2H, <u>CH</u>≡C-), 2.37–2.33 (m, 4H, <u>CH</u>₂-COO), 1.68–1.63 (m, 4H, CH₂-<u>C</u>₂<u>H</u>₄-CH₂) ppm.

Synthesis of copolymer 1. Di(propynyl) adipate (0.052 g, 0.233 mmol) was added to bis(3-azidopropyl)polydimethylsiloxane (0.700 g, 0.233 mmol). The stirred reaction mixture was heated at 140 °C for 18 h. The reaction course was monitored by ¹H NMR spectroscopy. The target product was obtained as a yellowish transparent viscous liquid. Yield: 0.731 g (97.2%).

¹H NMR (300 MHz, CDCl₃): δ 7.69 (s, 2H, CH triazole ring (1,5-substitution)), 7.57 (s, 2H, CH triazole ring (1,4-substitution)), 5.21–5.16 (d, 4H, O-<u>CH₂</u>), 4.34–4.29 (t, 4H, <u>CH₂-N</u>), 2.35–2.31 (m, 4H, <u>CH₂-COO</u>), 1.96–1.90 (m, 4H, <u>CH₂-CH₂-Si</u>), 1.66–1.63 (m, 4H, CH₂-<u>C₂H₄-CH₂</u>), 0.56–0.50 (m, 4H, Si-<u>CH₂</u>), 0.07 (m, 3H, Si-<u>CH₃</u>) ppm.

Synthesis of copolymer 2. Di(prop-2-yn-1-yl) hexane-1,6-diyldicarbamate (0.065 g, 0.233 mmol) was added to bis(3-azidopropyl)polydimethylsiloxane (0.700 g, 0.233 mmol). The stirred reaction mixture was heated at 140 °C for 21 h. The reaction course was monitored by ¹H NMR spectroscopy. The target product was obtained as a yellowish semi-transparent viscous liquid. Yield: 0.743 g (97.1%).

¹H NMR (300 MHz, CDCl₃): δ 7.65 (s, 2H, CH triazole ring (1,5-substitution)), 7.59 (s, 2H, CH triazole ring (1,4-substitution)), 5.15–5.13 (d, 4H, O-<u>CH₂</u>), 4.31–4.29 (m, 4H, <u>CH₂-N</u>), 3.14–3.12 (m, 8H, <u>C₄H₈</u>), 1.93–1.88 (m, 4H, <u>CH₂-CH₂-Si</u>), 1.46–1.29 (d, 4H, C₄H₈-<u>CH₂-N</u>), 0.54–0.48 (m, 4H, Si-<u>CH₂</u>), 0.07 (m, 3H, Si-<u>CH₃</u>) ppm.

Synthesis of copolymer 3. Di(propynyl) adipate (0.089 g, 0.247 mmol) was added to di(prop-2-yn-1-yl) [methylenebis(4,1-phenylene)]dicarbamate (0.741 g, 0.247 mmol). The stirred reaction mixture was heated at 140 °C for 12 h. The reaction course was monitored by ¹H NMR

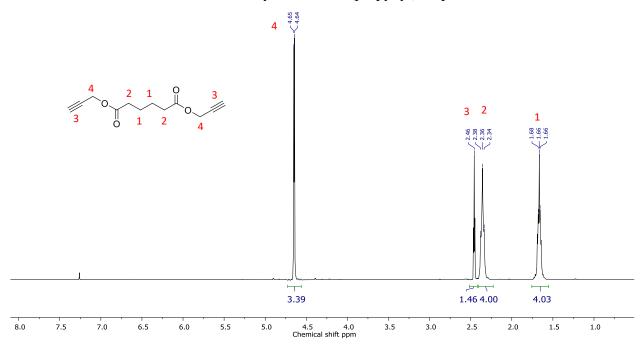
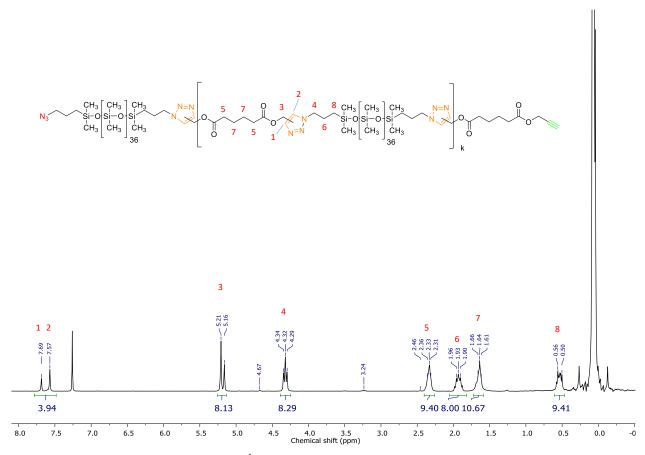
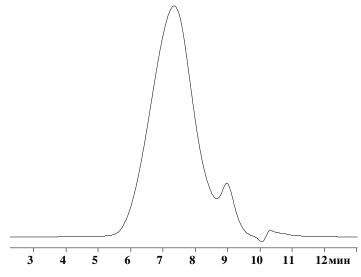
spectroscopy. The target product was obtained as a yellowish semi-transparent viscous liquid. Yield: 0.802 g (96.6%).

¹H NMR (300 MHz, CDCl₃): δ 7.74 (s, 2H, CH triazole ring (1,5-substitution)), 7.64 (s, 2H, CH triazole ring (1,4-substitution)), 7.10–7.07 (m, 4H, $\underline{C_6H_4}$), 5.28–5.24 (m, 4H, O- $\underline{CH_2}$), 4.36–4.28 (m, 4H, $\underline{CH_2}$ -N), 3.87 (s, 4H, $\underline{CH_2}$ -C₆H₄), 1.95–1.89 (m, 4H, $\underline{CH_2}$ -CH₂-Si), 0.55–0.48 (m, 4H, Si- $\underline{CH_2}$), 0.07 (m, 3H, Si- $\underline{CH_3}$) ppm.

2. Structures, ¹H NMR spectra, and GPC curves

HO OH + HO
$$pTsOH,Tol$$
 $T=110$ 0 $\eta=85\%$

Scheme S1. Synthesis of di(propynyl) adipate.

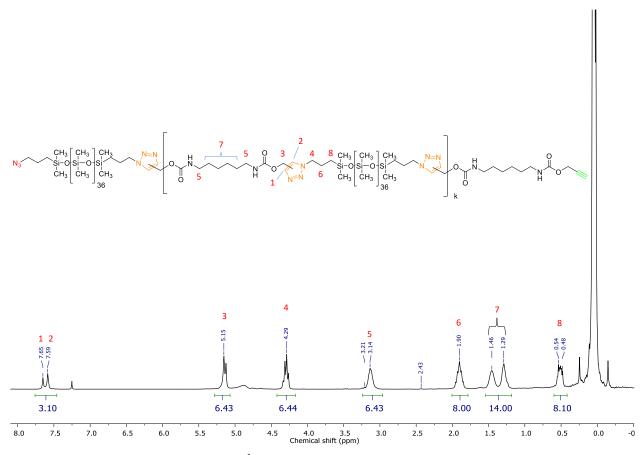

Figure S1. ¹H NMR spectrum of di(propynyl) adipate.

Figure S2. ¹H NMR spectrum of copolymer **1**.

Figure S3. GPC curve of copolymer 1.

Figure S4. ¹H NMR spectrum of copolymer **2**.

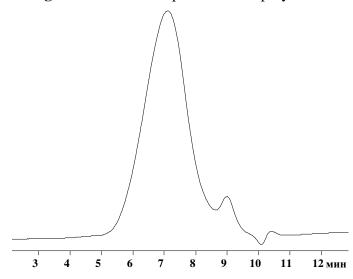
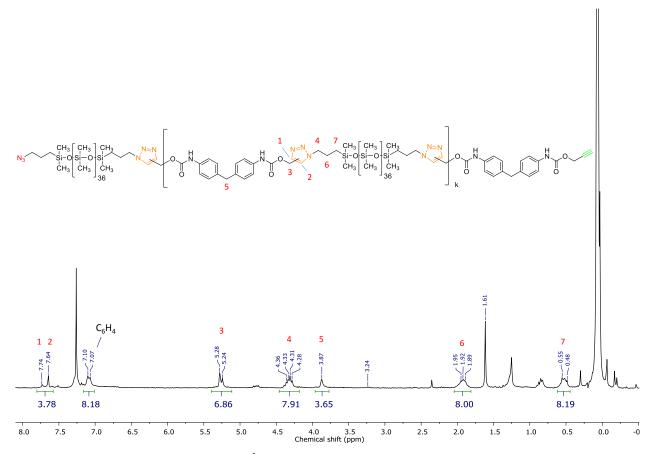
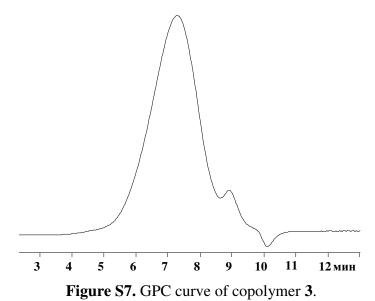




Figure S5. GPC curve of copolymer 2.

Figure S6. ¹H NMR spectrum of copolymer **3**.

