Electronic supplementary information ## COMPOSITE CARBON AEROGELS CONTAINING MANGANESE OXIDE: SYNTHESIS VIA THERMO-OXIDATIVE DECOMPOSITION OF Mn₂(CO)₁₀ IN SUPERCRITICAL CO₂ V. I. Chernov,**a,b V. V. Zefirov,*a,b A. V. Pastukhov,* and I. V. Elmanovich**. ^a Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, str. 2, Moscow, 119991 Russia ^b Nesmeyanov Institute of Organolement Compounds, Russian Academy of Sciences, ul. Vavilova 28, str. 1, Moscow, 119334 Russia **Figure S1.** Size distributions of the aerogels calculated based on the results of the adsorption experiments. **Table S1.** Characteristics of the porous structure of the resulting aerogels | | N_2 | | | | | CO_2 | | |---------|--------------------|---------------|--------------------|---------------------|---------------------|---------------------|--------------------| | | BET | DFT | | ВЈН | | DFT | | | | $a_{\rm s}(BET)$, | $a_{\rm s}$, | $V_{\rm s}$, | a_{me} , | V_{me} , | a_{mi} , | $V_{ m mi}$, | | | m^2/g | m^2/g | cm ³ /g | m²/g | cm ³ /g | m^2/g | cm ³ /g | | CA | 841 | 676 | 0,78 | 242 | 0.53 | 632 | 0.17 | | AG_Mn_2 | 682 | 551 | 0,65 | 192 | 0.45 | 612 | 0.16 | | AG_Mn_3 | 670 | 521 | 0,68 | 204 | 0.50 | 568 | 0.16 | | AG_Mn_4 | 672 | 543 | 0,65 | 198 | 0.46 | 582 | 0.16 | | AG_Mn_5 | 611 | 492 | 0,60 | 179 | 0.43 | | | Size distributions of the pores (**Fig. S1**) were calculated from the N_2 and CO_2 adsorption/desorption measurements using DFT and BJH methods. In the latter case, the large pores featuring a diameter over 3 nm were considered. The size distributions of the pores obtained by the DFT calculations described the diameter ranges of 3.5–34.0 nm (N_2) and 0.3–1.5 nm (CO_2). The size distributions of the pores did not reveal any significant change as the metal carbonyl loading increased from 0 to 40 mg; the mesopores were uniformly distributed by the sizes from 3 to 50 nm without any specific size fractions. **Table S1:** a_s , V_s are the specific surface area and specific volume of the pores with a diameter up to 50 nm; $a_{\rm me}$, $V_{\rm me}$ are the specific surface area and specific volume of the mesopores with a diameter of 3–50 nm; $a_{\rm mi}$, $V_{\rm mi}$ are the specific surface area and specific volume of the micropores $a_{\rm mi}$ with a diameter of 0.3–1.5 nm. As can be seen from this table, the specific surface area of the micropores composes 582–632 m²/g and does not exceed $a_s(BET)$. The specific volumes $V_{\rm mi}$ and $V_{\rm me}$ of all the aerogels obtained are 0.16–0.17 cm³/g and 0.43–0.53 cm³/g, respectively.